​有趣的数学-寻找最后的阿基米德多面体

有趣的数学-寻找最后的阿基米德多面体

上期回顾:

在上一篇“有趣的数学|最强大脑里的阿基米德多面体原来是这样”中,魔法君为大家讲解了柏拉图多面体以及五种截角多面体,在这一篇中我们将会继续为大家讲解什么是“截半”“斜方”“扭棱”阿基米德多面体。

“截半”与“截角”类似,只不过切割点变为了每条棱的中点,故称为“截半”。“截半”产生的新截面是比“截角”大一圈的同种正多边形,而原始柏拉图多面体的所有面变为了小一圈的同种正多边形。

这样得到的多面体也必然满足半正多面体的两个条件,所以我们得到了两种截半体。

为什么是“两种”呢?

这时候就要用到之前提到的对偶性了。大家不妨在脑海中切割一下正方体和正八面体,你会发现两者截半后得到了相同的多面体。

切割立方体

所以截半立方体就是截半八面体。

截八面体

同理,截半二十面体就是截半十二面体。

截半十二面体

至于正四面体,四刀下去,我们得到了一个正八面体,故不再记作一种阿基米德多面体。

正四面体

接下来是四种斜方体,比较复杂。

斜方体是由截半体切割而来,两种截半体和两种切割方式产生了4种斜方体。

以较为简单的截半立方体为例,作出所有棱的中点,连接同一顶点附近的四个中点,以此为截面切割,使得所有原始三角形变为小一圈的三角形,所有正方体变为小一圈的正方形。同时,对应着截半立方体的十二个顶点,产生十二个新的正方形的截面。这种切割方式与“截半”类似,得到的多面体称为小斜方截半立方体。

截半立方体

小斜方截半立方体

若是作出截半立方体所有棱的三等分点,连接同一顶点附近的四个三等分点,以此为截面切割,使得所有原始三角形变为正六边形,所有原始正方形变为正八边形,并产生十二个新的正方形的截面,这样就得到了大斜方截半立方体,也不难发现这种切割方式与“截角”类似。

大斜方截半立方体

同样的,对截半二十面体进行“截半”和“截角”,分别可以得到小斜方截半二十面体和大斜方截半二十面体。

小斜方截半二十面体和大斜方截半二十面体

现在,我们已经介绍完了11种由切割构造的阿基米德多面体。

喘口气,接下来欣赏一下两种最特别的阿基米德多面体——扭棱立方体和扭棱十二面体。

扭棱立方体和扭棱十二面体

扭棱立方体和扭棱十二面体的特别之处首先体现在其构造方式上。这两者不能像前11种那样用简单的切割描述。

现在请各位在脑海中想像一个立方体。将立方体的六个面扭转一定的角度,同时向外推出,推到合适的位置,使得我们刚好可以用32个等边三角形填满6个正方形之间的空隙。

示意图

这听起来很抽象。但是如果你能够想象出这一过程,就一定会被它的华丽优美深深吸引。

因为构造过程扭转了立方体的所有棱,故称为扭棱立方体。

扭棱立方体

用同样的方式可以构造出扭棱十二面体,将十二面体的所有面扭转一定的角度,同时向外推出到合适的位置,使得我们刚好可以用80个等边三角形填满12个正五边形之间的空隙,就得到了扭棱十二面体。

扭棱十二面体

现在,我们已经了解了两种扭棱体华丽的构造方式,但它们的特别之处还不止于此。

事实上,它们是极为罕见的“手性多面体”。

手性:

如果一个物体不能与自身的镜像重合,则该物体具有手性。

想象一下扭棱立方体的构造过程,如果扭转方向为顺时针,称得到的多面体为扭棱立方体A;如果扭转方向为逆时针,称得到的多面体为扭棱立方体B。

显然地,A与B的几何性质完全相同,但两者无论如何平移旋转都无法重合,一如镜子表里的两面。

扭棱十二面体也是如此。

扭棱立方体A、B

至此,我们已经了解了全部13种阿基米德多面体。

13种阿基米德多面体

但在结束之前魔法君还想讲一点题外话。

回想一下我们在上一篇“寻找阿基米德”的开头提到的多面体的对偶。事实上,多面体的对偶就是将一个多面体的顶点映射成面,面映射成顶点。

阿基米德多面体的全部顶点等价,故阿基米德多面体的对偶多面体的全部面等价。

示意图

这13种多面体被称为catalan多面体,它们也具有极高的对称性。

Catalan多面体

除此之外,还有数不尽的关于顶点、棱、面对称的凸多面体。

凸多面体

除此之外,还有有坑的,长角的,打洞的,重合的多面体。

示意图

除此之外,还有四维的,五维的对称几何体……

四维的几何对称体

五维的对称几何体

如果有兴趣你们可以继续研究^_^

往期精选:

小知识:

有趣的数学|无处不在的黄金分割比0.618如何看待 NASA 研究:中国新增绿化面积达到1/4个亚马逊雨林?挡不住的AI成熟趋势血型小故事:听说你不是亲生的1911年的撞船事故的元凶竟然是伯努利原理

小实验:

重力去哪了?牛奶动画水往高处流?

喜欢的话,可以推荐给更多朋友哦!

相关推荐

​关于纪年的由来,公元又到底是个什么时间?

​关于纪年的由来,公元又到底是个什么时间?

131

关于纪年的由来,公元又到底是个什么时间? 上历史课时,想必有人读到公元某某年时,脑子里一头雾水,不清楚公元到底是个什么时间概念,导致历史学不好。至今,或许还有很多人...

​巅峰时期的赵本山实力到底有多强?

​巅峰时期的赵本山实力到底有多强?

177

巅峰时期的赵本山实力到底有多强? 颁奖典礼上,赵本山掌掴冯小刚,成龙北京演唱会时深陷困境,赵本山一个电话令她全身而退,刘德华当年被困,也是赵本山出面摆平不战而屈人之...

​《怀孕圣经》- 一本写给新手爸妈的孕育指南

​《怀孕圣经》- 一本写给新手爸妈的孕育指南

127

《怀孕圣经》- 一本写给新手爸妈的孕育指南 发现怀孕之后,新手爸妈常常能体会到兴奋与不安。即将第一次做爸妈的兴奋感,同时伴随着不知道如何面对新历程的不安感。 怀孕是一个...

​红军万里长征胜利的意义是什么?

​红军万里长征胜利的意义是什么?

184

红军万里长征胜利的意义是什么? 踏破璀璨的历史长空,瞭望星辉里斑驳的流光闪烁,千年的风霜,冻结了多少英雄传说,那古今横贯的天地长线,串联着生命最初的力量,带给人惊奇...

​长沙浏阳市十大著名旅游景点

​长沙浏阳市十大著名旅游景点

60

长沙浏阳市十大著名旅游景点 长沙浏阳市十大著名旅游景点,主要选取当地知名的景点,热门好玩的景点进行综合参考推荐,主要包括:长沙市官渡古镇景区,长沙海底世界,湖南大围...

​孝感历年中考分数线参考数据都在这里!

​孝感历年中考分数线参考数据都在这里!

129

孝感历年中考分数线参考数据都在这里! 2018年 一、第一批:孝感高中及县(市、区)一中自主招生、统一计划生、分配生,孝感高中中外合作计划生 1.孝感教育教学管理特色高中自主...

​值得观看的高分创业电视剧

​值得观看的高分创业电视剧

121

值得观看的高分创业电视剧 盘点一下二十部值得观看的高分创业电视剧 1、青岛往事 《青岛往事》是由中共青岛市委宣传部牵头策划、山东影视传媒集团联合青岛广电影视、青岛凤凰影...

​开闸放水什么意思水库什么时候开闸放水

​开闸放水什么意思水库什么时候开闸放水

100

开闸放水什么意思水库什么时候开闸放水 开闸放水什么意思水库什么时候开闸放水?为了缓解长江中下游地区的旱情,长江中上游的数十座大水库依次开闸放水,从8月16日开始,三峡水...

​成功设计制造出中国第一架飞机的人是谁

​成功设计制造出中国第一架飞机的人是谁

76

成功设计制造出中国第一架飞机的人是谁 1909年9月21日,中国籍科学家冯如在美国进行了一次成功的试飞,他驾驶自行设计、研制和生产的飞机“冯如一号”。这架飞机标志着中国取得...

​离子态是什么意思?什么是等离子态

​离子态是什么意思?什么是等离子态

192

离子态是什么意思?什么是等离子态 离子态是什么意思?什么是等离子态?物质的已知的有六种形态:固态、液态、气态、等离子态、玻色一爱因斯坦凝聚态、费米子凝聚态等离子态也...

​木星在中国古代被称为什么?木星的别称和雅称

​木星在中国古代被称为什么?木星的别称和雅称

190

木星在中国古代被称为什么?木星的别称和雅称 木星在中国古代被称为什么?木星的别称和雅称。木星古代称为岁星。因为木星的公转周期是12年,与中国地支纪年法的周期相同,所以...

​021是哪里的区号啊?021是哪里的区号座机电话

​021是哪里的区号啊?021是哪里的区号座机电话

55

021是哪里的区号啊?021是哪里的区号座机电话 021是哪里的区号啊?021是哪里的区号座机电话?上海市,简称“沪”或“申”,是中华人民共和国直辖市、国家中心城市、超大城市、上海...